
Derivative Discretization on GPUs

Paulius Micikevičius
NVIDIA

Manycore and Accelerator-based High-performance Scientific Computing
UC Berkeley, 2011

What this talk is about

• Derivative discretization for FD methods
– Time domain

– Explicit (derivatives approximated with stencils)

– Examples assume second derivatives
• Though other orders would be implemented exactly the same way

• Goal: provide sufficient background so that a scientist
can choose the right approach for the problem at hand
– Review implementation approaches and their tradeoffs

– Some performance analysis

– Experimental results showing throughputs
• Reasonably optimized (as opposed to highly optimized)

Outline

• Assumptions and definitions

• Relevant GPU details

• PDEs with derivatives in one dimension

• PDEs with derivatives in two dimensions

Assumptions and definitions

• Experimental setup:
• Fermi C2050, ECC off, 64-bit Linux, CUDA 3.2

• 3D data used in all experiments
– 512x512x512 (excluding the padding)
– Results can be extrapolated for 1D and 2D data with the same number

of elements

• Dimensions: x, y, z
– x is the fastest varying, z is the slowest

• Derivative discretization:
– Symmetric stencil with radius=R

– Assumes isotropic medium and non-stretched grid

– Number of stencil points:
• 1D: 2R+1
• 2D: 4R+1
• 3D: 6R+1

Relevant GPU details

• Memory accesses are per warp
– Warp = 32 threads
– 32 addresses are converted into line requests
– For max perf: an access by a warp should be within a line

(or small number of lines)

• GPUs need sufficient number of threads to saturate
memory and instruction bandwidth
– ILP helps to an extent (Vasily Volkov’s talk at GTC2010)

• If there are barriers, it’s often better to have a few
smaller threadblocks concurrent per SM
– As opposed to one large one

PDEs with derivatives in 1 dimension

• Two types of kernels
– Determined by stencil memory access pattern

• Stencils along the fastest-varying dimension
– A thread needs a contiguous region of elements
– Adjacent threads’ regions overlap
– Staged through shared memory

• Stencils along other dimensions
– Adjacent threads access adjacent elements
– No region overlap
– Straightforward “marching” along the dimension

Two approaches for x-stencils

• One thread per output element
– Some threads also fetch halos

“halo” “halo”Input elements corresponding to output

• One thread per input element
– Threads for halos as well (but don’t compute or write)

“halo” “halo”Input elements corresponding to output

X-stencil performance

• 256- vs 64-thread blocks:
– Halos are a larger percentage of accesses for 64-thread blocks

• Accesses are in 32B lines, so in increments of 4 fp64 values
• R = 1:

– 64-thread block: reads 72 values to produce 64
– 256-thread block: reads 264 values to produce 256

– Easier to saturate arithmetic pipelines with more threads
– Perf converges for larger orders:

• Code becomes arithmetic rather than bandwidth bound

Stencils along “slow” dimensions

• Each thread is responsible for a “pencil” of output
– “Marches” along the dimension
– Keeps the necessary number of elements in registers

• Per output element:
– Read one input element, do all the arithmetic

• Arithmetic intensity increases with stencil size
• Memory pressure doesn’t

– Manage values in registers (“advance” the queue)

Thread “marching” direction

Values needed by a thread, stored in registers

Fastest memory dimension

template <int radius, int diameter>

__global__ void dy(TYPE* g_dy, const TYPE* g_input,

const int nx, const int ny, const int nz,

const int dimx, const int dimy, const int dimz)

{

int ix = blockIdx.x * blockDim.x + threadIdx.x;

int iz = blockIdx.y * blockDim.y + threadIdx.y;

int stride = dimx;

int idx_out = iz*dimx*dimy + ix;

int idx_in = idx_out - radius*stride;

TYPE buffer[diameter];

#pragma unroll

for(int i=1; i<diameter; i++)

{

buffer[i] = g_input[idx_in];

idx_in += stride;

}

// #pragma unroll X

for(int iy=0; iy<ny; iy++)

{

#pragma unroll

for(int i=0; i<diameter-1; i++)

buffer[i] = buffer[i+1];

buffer[diameter-1] = g_input[idx_in];

TYPE derivative = c_coeff[0] * buffer[radius];

#pragma unroll

for(int i=1; i<=radius; i++)

derivative += c_coeff[i] * (buffer[radius-i] + buffer[radius+i]);

g_dy[idx_out] = derivative

idx_in += stride;

idx_out += stride;

}

}

Compute indices for access

template <int radius, int diameter>

__global__ void dy(TYPE* g_dy, const TYPE* g_input,

const int nx, const int ny, const int nz,

const int dimx, const int dimy, const int dimz)

{

int ix = blockIdx.x * blockDim.x + threadIdx.x;

int iz = blockIdx.y * blockDim.y + threadIdx.y;

int stride = dimx;

int idx_out = iz*dimx*dimy + ix;

int idx_in = idx_out - radius*stride;

TYPE buffer[diameter];

#pragma unroll

for(int i=1; i<diameter; i++)

{

buffer[i] = g_input[idx_in];

idx_in += stride;

}

// #pragma unroll X

for(int iy=0; iy<ny; iy++)

{

#pragma unroll

for(int i=0; i<diameter-1; i++)

buffer[i] = buffer[i+1];

buffer[diameter-1] = g_input[idx_in];

TYPE derivative = c_coeff[0] * buffer[radius];

#pragma unroll

for(int i=1; i<=radius; i++)

derivative += c_coeff[i] * (buffer[radius-i] + buffer[radius+i]);

g_dy[idx_out] = derivative

idx_in += stride;

idx_out += stride;

}

}

Compute indices for access

Declare the local (register) buffer for values

Fill it up to start the computation

template <int radius, int diameter>

__global__ void dy(TYPE* g_dy, const TYPE* g_input,

const int nx, const int ny, const int nz,

const int dimx, const int dimy, const int dimz)

{

int ix = blockIdx.x * blockDim.x + threadIdx.x;

int iz = blockIdx.y * blockDim.y + threadIdx.y;

int stride = dimx;

int idx_out = iz*dimx*dimy + ix;

int idx_in = idx_out - radius*stride;

TYPE buffer[diameter];

#pragma unroll

for(int i=1; i<diameter; i++)

{

buffer[i] = g_input[idx_in];

idx_in += stride;

}

#pragma unroll 5

for(int iy=0; iy<ny; iy++)

{

#pragma unroll

for(int i=0; i<diameter-1; i++)

buffer[i] = buffer[i+1];

buffer[diameter-1] = g_input[idx_in];

TYPE derivative = c_coeff[0] * buffer[radius];

#pragma unroll

for(int i=1; i<=radius; i++)

derivative += c_coeff[i] * (buffer[radius-i] + buffer[radius+i]);

g_dy[idx_out] = derivative

idx_in += stride;

idx_out += stride;

}

}

Compute indices for access

Declare the local (register) buffer for values

Fill it up to start the computation

Main loop

#pragma unroll 5

for(int iy=0; iy<ny; iy++)

{

#pragma unroll

for(int i=0; i<diameter-1; i++)

buffer[i] = buffer[i+1];

buffer[diameter-1] = g_input[idx_in];

TYPE derivative = c_coeff[0] * buffer[radius];

#pragma unroll

for(int i=1; i<=radius; i++)

derivative += c_coeff[i] * (buffer[radius-i] + buffer[radius+i]);

g_dy[idx_out] = derivative;

idx_in += stride;

idx_out += stride;

}

“Advance” the local values

Compute the

derivative

#pragma unroll 5
for(int iy=0; iy<ny; iy++)

{

#pragma unroll

for(int i=0; i<diameter-1; i++)

buffer[i] = buffer[i+1];

buffer[diameter-1] = g_input[idx_in];

TYPE derivative = c_coeff[0] * buffer[radius];

#pragma unroll

for(int i=1; i<=radius; i++)

derivative += c_coeff[i] * (buffer[radius-i] + buffer[radius+i]);

g_dy[idx_out] = derivative;

idx_in += stride;

idx_out += stride;

}

“Advance” the local values

Compute the

derivative

Y-stencil throughput

• Z-stencil is pretty much the same

Bandwidth-bound

Bandwidth-bound

Instruction-bound

Y-stencil performance vs instructions issued

Summary: PDEs with 1-dimensional derivatives

• Derivatives along the fastest-dimension tend
to be instruction-throughput limited

– Small threadblocks perform slower for low orders

• Derivatives along the “slow” dimensions stay
memory bandwidth limited until larger
orders

– Perform essentially as memcopies

PDEs with derivatives in 2 dimensions

• Two “subtypes”
– Combination of derivatives along one dimension

– Mixed derivatives

• Implementation choices:
– Two-pass approach

• 2 kernel launches, 2nd consumes the output of the 1st one
• More accesses per output cell, but halos are a small percentage of accesses

– Single-pass approach
• Fewer accesses per output cell, but halos can start dominating

yx 2

2

2

2

zx 2

2

2

2

zy 2

2

2

2

yx

2

zx

2

zy

2

Two pass approach

• Mixed derivatives:

– Straightforward: run 2 kernels in sequence

– 4 accesses per output cell

• Combination of “single” derivatives:

– 2nd kernel needs a to read both the original data
and the output of the 1st kernel

– 5 accesses per output cell

Single-pass approach

• Derivatives including the fastest-varying dimension
– Compute the derivative in the “slow” dimension out of

registers, store into SMEM

– Compute the derivative in the “fast” dimension out of
SMEM

Stored in SMEM

Stored in register

Halo, stored in registers (only needed for mixed derivatives

Thread “marching” direction

Single-pass approach

• Mixed Derivatives not including the fastest-varying dimension
– Successive threads still need to access along the fastest-varying

dimension
• To get GMEM coalescing

– Use 2D threadblocks
• Tile the xy-plane with threadblocks
• Each threadblock “marches” along z dimension
• Load data and halos above/below at the front into SMEM, compute y-deriv
• Propagate y-derivs through registers, compute z deriv

Thread “marching” direction

zy

2

Combinations of “single” derivatives

Comments and conclusions

• Understanding basic computer-architecture concepts allows for very
effective optimizations
– Know whether code is memory or instruction bound, optimize accordingly

• loop-unrolling pragma for {y, z}-stencils
• Choosing 1- or 2-pass approach for yz-stencils

– Keep mem system in mind when parallelizing

• Output throughput does not decrease by much when increasing
spatial order from 2nd to 4th or 6th

– May allow working with smaller grids / longer time-steps

• Fp64 stencil code is bandwidth-bound for smaller orders, instruction-
bound for larger ones
– Cross-over: 8th to 14th order in space
– Fp32 stencils are bandwidth bound for even greater orders

